
Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Annotation Strategies &
Machine Language

Annotation Strategies, Machine Languages, Control Flow of
Computer Instructions, Hack Assembly

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Vote at https://pollev.com/cse390b

Do the current times for CSE 390B office hours fit well
with your schedule? If not, which days and times for CSE
390B office hours would work better for you?

2

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

CSE 390B Logistics

❖ Please email the course staff if you need to attend office
hours on Zoom

❖ Your grade on Gradescope is your raw score (i.e., doesn’t
take into account lateness deductions)
▪ Lateness deductions will be factored into the Canvas assignment

❖ You can check your late days remaining in the Canvas
assignment titled “Late Days Remaining”

❖ Project 4 Cornell notes should be for a class aside from
CSE 390B

3

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Annotating Texts
▪ Motivation and Techniques for Annotation

❖ Machine Languages
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

4

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Cornell Note-taking Follow-up Discussion

In groups of 3-4, discuss the following about the Cornell
notes you took from last Thursday’s lecture:

❖ What are some of the key points you wrote in your
summary?

❖ What were some of the questions you came up with?

❖ What are you still left feeling confused or uncertain about
after Thursday’s lecture?

5

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Annotating Your Texts

❖ WHAT
Intentionality of interacting with a
text to enhance the reader's
understanding of, recall of, and
reaction to the text

6

WHY DO WE
CARE?!

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

❖ HOW
▪ Highlighting, underlining or using

[brackets] to note key points or
ideas

Annotating Your Texts

7

WHY DO WE
CARE?!

❖ WHAT
Intentionality of interacting with a
text to enhance the reader's
understanding of, recall of, and
reaction to the text

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

❖ HOW
▪ Highlighting, underlining or using

[brackets] to note key points or
ideas

▪ Circling unfamiliar words or
confusing parts of the text

Annotating Your Texts

8

WHY DO WE
CARE?!

❖ WHAT
Intentionality of interacting with a
text to enhance the reader's
understanding of, recall of, and
reaction to the text

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

❖ HOW
▪ Highlighting, underlining or using

[brackets] to note key points or
ideas

▪ Circling unfamiliar words or
confusing parts of the text

▪ Paraphrasing or summarizing
passages/chapters/sections

Annotating Your Texts

9

WHY DO WE
CARE?!

❖ WHAT
Intentionality of interacting with a
text to enhance the reader's
understanding of, recall of, and
reaction to the text

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

❖ HOW
▪ Highlighting, underlining or using

[brackets] to note key points or
ideas

▪ Circling unfamiliar words or
confusing parts of the text

▪ Paraphrasing or summarizing
passages/chapters/sections

▪ Commenting or reacting to the
text 🤯

Annotating Your Texts

10

WHY DO WE
CARE?!

❖ WHAT
Intentionality of interacting with a
text to enhance the reader's
understanding of, recall of, and
reaction to the text

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Annotating Texts
▪ Motivation and Techniques for Annotation

❖ Machine Languages
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

11

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Revisiting The Von Neumann Architecture

12

COMPUTER

MEMORY

(This picture will get more detailed as we go!)

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

PROGRAM

DATA

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Machine Code

❖ Instructions are stored in memory, so they must be able
to be encoded in binary

❖ When we refer to machine code, we are typically talking
about this binary representation of code

❖ Each instruction is a sequence of 0s and 1s
▪ Our computer / hardware specification is what gives meaning to

each part of this sequence
▪ “Is this an add or subtract instruction? What are the inputs?”

13

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

(This picture will get more detailed as we go!)

Storing the Program

14

COMPUTER

MEMORY

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Assembly Languages

❖ Writing code using 0s and 1s is tedious and error prone

❖ Assembly languages are a human-readable format of
binary instructions that a CPU runs

❖ Each human-readable assembly instruction has a
corresponding binary machine code instruction
▪ Example: addq reg1, reg2 == 0b1011000101010100

❖ Assembly is often used as an intermediary between a
high-level programming language and machine code

15

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Producing Machine Code

1616

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100)
{
sum += arr[i];
i++;

}
Java

Load & Execute

Compile

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Producing Machine Code

1717

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100)
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Producing Machine Code

1818

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100)
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble

Compile

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Machine Language

❖ Specification of the Hardware / Software interface
▪ What operations are supported?
▪ What do they operate on?
▪ How is the program controlled?

❖ Usually in close correspondence with the hardware
architecture
▪ Different specification for different hardware platforms

❖ Cost and Performance Tradeoffs
▪ Silicon area and complexity
▪ Time to complete instruction
▪ Power consumption

19

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Machine Operations

❖ Correspond to the operations supported by hardware:
▪ Arithmetic (+,	–)
▪ Logical (And, Or)
▪ Flow Control (“go to instruction n”, “if (condition) then go to

instruction n”)

❖ Differences between machine languages:
▪ Instruction set richness (e.g., division? bulk copy?)
▪ Data types (e.g., word size, floating point)

20

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Registers

❖ CPU typically has a small number of
registers
▪ Very efficient to access
▪ Used for intermediate, short-term

“scratch work”

❖ Number and use of registers is a
central part of any machine language

21

CPU

REGISTERS

21

CONTROL

0101110011100110rsp

0101110011100110reg2

0101110011100110D

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Addressing Modes

❖ “What locations can I specify in my assembly code?”

❖ Some useful options:
▪ Register

• add reg1, reg2
▪ Direct Memory Access

• add reg1, Memory[200]
▪ Indirect Memory Access

• add reg1, Memory[reg2]
▪ Immediate

• add 100, reg2

22

Access the giant array (i.e.,
memory) at index 200

Register names

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Five-minute Break!

❖ Feel free to stand up, stretch, use the restroom, drink
some water, review your notes, or ask questions

❖ We’ll be back at:

23

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Annotating Texts
▪ Motivation and Techniques for Annotation

❖ Machine Languages
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

24

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Flow Control

25

COMPUTER

MEMORY

25

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

PC 1

Which instruction
should execute

next?

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Flow Control: Unconditional Jumps

❖ Usually, the CPU just executes machine instructions in a
sequence
▪ Typically moves to the instruction with the next highest address

❖ Sometimes we want to always “jump” to another location
▪ Example: At the end of an infinite loop

26

High Level Code (similar to Java) Assembly Code

while (true) {
reg1++;
<more loop body>

}
<code after loop>

TOP:
add 1, reg1
<more loop body>
jmp TOP
<code after loop>

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Flow Control: Conditional Jumps

❖ Usually, the CPU just executes machine instructions in a
sequence
▪ Typically moves to the instruction with the next highest address

❖ Sometimes we want to “jump” only if a condition is met
▪ Example: At the condition of an if statement

27

High Level Code (similar to Java) Assembly Code

if (reg1 < reg2) {
reg1++;

}
reg2++;

cmp reg1, reg2
jge SKIP
add 1, reg1

SKIP:
add 1, reg2

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Program Counter (PC)

❖ Memory is used to store data as well as code

❖ Instructions and operations are stored at different
addresses in memory

❖ Program Counter in the CPU keeps track of which address
contains the instruction that should be executed next

28

COMPUTER

MEMORY

Data and
instructions

CPU

Program Counter
(which line of code
should I execute)

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs

the instruction at address 24 in the code segment

29

Next cycle, replace
counter value with in

(E.g., method calls)

Next cycle, add 1 to
counter value

(E.g., normal operation)

Next cycle, set counter
to 0

(E.g., program start)

PC

load

in

16

out

16

inc reset

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs

the instruction at address 24 in the code segment

❖ Program counter specification:
if (reset[t] == 1) out[t+1] = 0

else if (load[t] == 1) out[t+1] = in[t]

else if (inc[t] == 1) out[t+1] = out[t] + 1

else out[t+1] = out[t]

30

PC

load

in

16

out

16

inc reset

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Lecture Outline

❖ Strategies for Annotating Texts
▪ Motivation and Techniques for Annotation

❖ Machine Languages
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

31

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

The Hack Computer

❖ The hardware you
will build
▪ 16-bit word size
▪ ROM: sequence of

instructions
• ROM[0], RAM[1]…

▪ RAM: data sequence
• RAM[0], RAM[1]…

3232

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions,

Read-Only)

1110001011111100

RAM
(16-bit Data,
Read/Write)

1100101010010101
PC

A/M D

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

The Hack Machine Language

❖ Two types of
instructions (16-bit)
▪ A-instructions load

data
▪ C-instructions perform

computations

❖ Program: sequence
of instructions

3333

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions,

Read-Only)

1110001011111100

RAM
(16-bit Data,
Read/Write)

1100101010010101
PC

A/M D

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: Control Flow

❖ Startup
▪ Hack instructions loaded into ROM
▪ Reset signal initializes computer state (instruction 0)

❖ Execution
▪ Usually, advance to next instruction each cycle
▪ On jump instruction, write a different address into the PC

34

0101110011100110
1011000101010100
1110001011111100
0101110101101110
0001011000111010
0010111011011001
0110111110101001
0001110010110110

ROM (Instructions)

0
1
2
3
4
5
6
7

...

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: Registers

❖ D Register: For storing Data

❖ A Register: For storing data and Addressing memory

❖ M “Register”: The 16-bit word in Memory currently being
referenced by the address in A

35

REGISTERS

A
108

D

RAM

1100101010010101

...
106
107
108
109
110
...

M

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: A-Instructions

❖ Syntax:

❖ value can either be:
▪ A non-negative decimal constant
▪ A symbol referring to a constant

❖ Semantics:
▪ Stores value in the A register

36

@value

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: A-Instructions

❖ Symbolic Syntax

▪ Loads a value into the A
register

❖ Example:

37

❖ Binary Syntax

0000000000010101

Family:
A-Instruction

Value:
Binary
encoding of 21

@value

A Register

0

D Register

0

A Register

21

D Register

0

...

@21

...

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: Symbols

❖ Symbols are simply an alias for some address
▪ Only in the symbolic code—don’t turn into a binary instruction
▪ Assembler converts use of that symbol to its value instead

❖ Example:

38

@3
D=0

(LOOP)
@21
D=1
@LOOP

...

00
01

02
03
04

0000000000000011
1110101010010000
0000000000010101
1110111111010000
0000000000000010

...

00
01
02
03
04

Assemble

LOOP = 02

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: Built-In Symbols

❖ Using () defines a symbol in ROM / Instructions
❖ Assembler knows a few built-in symbols in RAM / Data
❖ R0, R1, ..., R15: Correspond to addresses at the

very beginning of RAM (0, 1, …, 15)
▪ “Virtual registers,” Useful to store variables

❖ SCREEN, KBD: Base of I/O Memory Maps
❖ Example:

39

A Register

0

D Register

0

A Register

3

D Register

0

...

@R3

...

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Syntax: (dest and jump optional)
▪ dest is a combination of destination registers:

▪ comp is a computation:

▪ jump is an unconditional or conditional jump:

❖ Semantics:
▪ Computes value of comp
▪ Stores results in dest (if specified)
▪ If jump is specified and condition is true (by testing comp result),

jump to instruction ROM[A]
40

dest = comp ; jump

M, D, MD, A, AM, AD, AMD

0, 1, -1, D, A, !D, !A, -D, -A, D+1, A+1, D-1, A-1, D+A, D-A,
A-D, D&A, D|A, M, !M, -M, M+1, M-1, D+M, D-M, M-D, D&M, D|M

JGT, JEQ, JGE, JLT, JNE, JLE, JMP

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

41

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition for
jumping

Dest:
Where to store
result

Comp:
ALU Operation (a bit chooses
between A and M)

UnusedFamily:
C-Instruction

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

❖ Symbolic:

❖ Binary:

Hack: C-Instructions

42

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Jump:
Condition for
jumping

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

43

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Dest:
Where to store
result

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

44

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Comp:
ALU Operation (a bit chooses
between A and M)

Chapter 4 Important: just pattern
matching text!
Cannot have “1+M”

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions Example

45

(EXAMPLE)

@55

D=A+1

00

01

A Register

55

D Register

56

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions Example

46

(EXAMPLE)

@55

D=A+1

@R2

M=D

00

01

02

03

RAM

0

1

2

?

?

56

...

A Register

55

D Register

56

A Register

2

D Register

56

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Hack: C-Instructions Example

47

(EXAMPLE)

@55

D=A+1

@R2

M=D

@EXAMPLE

D;JGT

00

01

02

03

04

05

RAM

0

1

2

?

?

56

...

A Register

0

D Register

56

(Will jump to instruction 0, since D > 0)

A Register

2

D Register

56

A Register

55

D Register

56

Lecture 8: Annotation Strategies & Machine Language CSE 390B, Autumn 2022

Post-Lecture 8 Reminders

❖ We will explore Hack Assembly in lecture this Thursday!

❖ Project 4 due this Thursday (10/27) at 11:59pm

❖ Preston has office hours after class in CSE2 153
▪ Feel free to post your questions on the Ed board as well

❖ Midterm exam coming up in around two weeks (11/10)
during lecture time
▪ More details to come, along with metacognitive strategies for

preparing for exams

48

